Roll No.

Total Pages : 03

789

GSE/D-21 PHYSICS Paper I

Classical Mechanics and Theory of Relativity

Time : Three Hours] [Maximum Marks : 40

Note : Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. **1** is compulsory. All questions carry equal marks. Non-programmable calculator is allowed.

(Compulsory Question)

1.	(a)	How the concept of center of mass is useful in	the
		dynamics of rigid bodies ?	2

- (b) Whatl are Generalized coordinates ? 2
- (c) Give the postulates of Special Theory of Relativity. 2
- (d) Why is compensating plate used in Michelson-Morley's experiment ? 2

Unit I

State and prove the conservation theorem of energy for a system of particles.
8

(3)L-789

1

3. (a)	What are Holonomic and Non-Holonomic				
	Constraints? Explain with examples. 4				
(b)	State and prove the law of conservation of angular				
	momentum for <i>n</i> -particles system. 4				
Unit II					
4. (a)	Find the time period for simple pendulum with the				
	help of Lagrange's equation of motion. 4				
(b)	Discuss configurational space and degree of freedom.				
	4				
5. (a)	Explain the following terms : 4				
	Generalized displacement, velocity and acceleration.				
(b)	Deduce Lagrange's equation of motion from				
	Hamilton's principle. 4				
Unit III					
6. (a)	Derive an expression for force acting on a particle				
	in a uniformly rotating frame of reference. Explain				
	the physical significance of various terms obtained.				
	6				
(b)	Whether earth is an inertial or non-inertial frame of				
	reference ? Explain. 2				
7. (a)	Explain the effect of centrifugal force on the surface				
	of the earth. 5				
(3)L-789	2				

(b) Compare and contrast inertial and non-inertial frame of reference. 3

Unit IV

8.	(a)	Derive the formula for variation of mass of a particle
		with its velocity. 6
	(b)	What is the velocity of a meter stick moving parallel
		to its length, when its mass is 1.5 times of its rest
		mass ? 2
9.	(a)	What is relativity of length ? Find the expression
		for Fitzgerald length contraction. 5
	(b)	An electron moves with velocity of $0.6 \times 10^8 \text{ ms}^{-1}$.
		Calculate its mass, when $m_e = 9 \times 10^{-31}$ kg. 3

(3)L-789

3